DOCK8 deficiency due to a deep intronic variant in two kindreds with hyper-IgE syndrome


Oktelik F. B., Wang M., Keles S., Eke Gungor H., Cansever M., CAN S., ...Daha Fazla

Clinical Immunology, cilt.268, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 268
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.clim.2024.110384
  • Dergi Adı: Clinical Immunology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: DOCK8, Hyper-immunoglobulin E syndrome (HIES), Inborn errors of immunity, Intronic mutation, Whole exome sequencing (WES)
  • İstanbul Üniversitesi Adresli: Evet

Özet

Dedicator of cytokinesis 8 (DOCK8) deficiency underlies the majority of cases of patients with autosomal recessive form of the hyper-immunoglobulin E syndrome (HIES). Most DOCK8 mutations involve deletions and splice junction mutations that abrogate protein expression. However, a few patients whose presentation is reminiscent of DOCK8 deficiency have no identifiable mutations. Using Whole Exome Sequencing (WES), we identified a deep intronic homozygous DOCK8 variant located in intron 36 (c.4626 + 76 A > G) in two unrelated patients with features of HIES that resulted in an in-frame 75 base pair intronic sequence insertion in DOCK8 cDNA, resulting in a premature stop codon (p.S1542ins6Ter). This variant resulted in variable decrease in DOCK8 expression that was associated with impaired T cell receptor-triggered actin polymerization, decreased IL-6-induced STAT3 phosphorylation, reduced expression of the Th17 cell markers CCR6 and IL-17, and higher frequencies of GATA3+ T cells indicative of Th2 skewing. Our approach extends the reach of WES in identifying disease-related intronic variants. It highlights the role of non-coding mutations in immunodeficiency disorders, including DOCK8 deficiency, and emphasizes the need to explore these mutations in unexplained inborn errors of immunity.