European Journal of Neurology, cilt.32, sa.1, 2025 (SCI-Expanded)
Background and purpose: Studies have found that up to 73% of COVID-19 patients experience hyposmia. It is unclear if the loss of smell in COVID-19 is due to damage to the peripheral or central mechanisms. This study aimed to explore the impacts of COVID-19-induced hyposmia on brain structure and cognitive functions. Methods: The study included 36 hyposmic (h-COV) and 21 normosmic (n-COV) participants who had recovered from mild COVID-19 infection, as well as 25 healthy controls (HCs). All participants underwent neurological examination, neuropsychiatric assessment and Sniffin’ Sticks tests. High-resolution anatomical images were collected; olfactory bulb (OB) volume and cortical thickness were measured. Results: Addenbrooke's Cognitive Examination—Revised total and language sub-scores were slightly but significantly lower in the h-COV group compared to the HC group (p = 0.04 and p = 0.037). The h-COV group exhibited poorer performance in the Sniffin’ Sticks test terms of discrimination score, identification score and the composite score compared to the n-COV and HC groups (p < 0.001, p = 0.001 and p = 0.002 respectively). A decrease in left and right OB volumes was observed in the h-COV group compared to the n-COV and HC groups (p = 0.003 and p = 0.006 respectively). The cortical thickness analysis revealed atrophy in the left lateral orbitofrontal cortex in the h-COV group compared to HCs. A significant low positive correlation of varying degrees was detected between discrimination and identification scores and both OB and left orbital sulci. Conclusion: Temporary or permanent hyposmia after COVID-19 infection leads to atrophy in the OB and olfactory-related cortical structures and subtle cognitive problems in the long term.