RESULTS IN PHYSICS, cilt.10, ss.818-821, 2018 (SCI-Expanded)
We show that the second law of thermodynamics is rooted in quantum mechanics, inasmuch as allowing the substitution of the Boltzmann constant k and temperature with respectively the Planck constant and quantum numbers. In particular, we will see that the entropy S becomes proportional to the natural logarithm of the average of the squared quantum numbers (n(2)) over bar, where each quantum number is associated with a quantum state of the constituents of the thermodynamical system under consideration. It is important to stress that the present approach furnishes the corrected Boltzmann entropy expression. Thus, instead of S = k ln Omega, with Omega in the former signifying the number of Boltzmann microstates, we land at S = k ln (n(2)) over bar The results obtained are discussed.