On Locally Conformal Kaehler Submersions


ÇİMEN Ç., PİRİNÇÇİ B., Tastan H. M., Ulusoy D.

INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, cilt.12, sa.2, ss.507-518, 2024 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 2
  • Basım Tarihi: 2024
  • Doi Numarası: 10.36890/iejg.1461324
  • Dergi Adı: INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.507-518
  • İstanbul Üniversitesi Adresli: Evet

Özet

We study locally conformal Kaehler submersions, i.e., almost Hermitian submersions whose total manifolds are locally conformal Kaehler. We prove that the vertical distribution of a locally conformal Kaehler submersion is totally geodesic iff the Lee vector field of total manifold is vertical. We also obtain the O'Neill tensors A and T with respect to the Weyl connection of a locally conformal Kaehler submersion. Then, we proved that the horizontal distribution of such a submersion is integrable iff A equivalent to 0. Finally, we get Chen-Ricci inequalities for locally conformal Kaehler space form submersions and Hopf space form submersions.