UHPLC-ESI-MS/MS and GC-MS Analyses on Phenolic, Fatty Acid and Essential Oil of Verbascum pinetorum with Antioxidant, Anticholinesterase, Antimicrobial and DNA Damage Protection Effects


BOĞA M., ERTAŞ A., YILMAZ M. A. , KIZIL M., Ceken B., HAŞİMİ N., ...Daha Fazla

IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH, cilt.15, ss.393-405, 2016 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 15 Konu: 3
  • Basım Tarihi: 2016
  • Dergi Adı: IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH
  • Sayfa Sayıları: ss.393-405

Özet

This paper is the first phytochemical and ABTS cation radical decolorisation activity, cupric reducing antioxidant capacity, anticholinesterase and DNA damage protection effect of endemic Verbascum pinetorum (Boiss.) O. Kuntze. Phenolic profile of V. pinetorum were qualified and quantified by UHPLC-ESI-MS/MS analysis. Malic acid (47250.61 +/- 2504.28 mu g/g) and luteolin (7651.96 +/- 527.98 mu g/g) were found as most abundant compounds for metanol and acetone extracts, respectively. Fatty acid and essential oil compositions were determined by GC-MS analysis. The main components of fatty acid were found to be palmitic (27.1%) and stearic (22.1%) acids. The main compounds of the essential oil were cineole (16.9%) and alpha-selinene (16.4%). The acetone extract was found to be more active than BHT used as a standard in beta-carotene-linoleic acid test system. In DPPH free radical scavenging activity, the acetone and methanol extracts showed higher activity than BHT at all tested concentrations. The acetone, methanol and water extracts showed strong inhibition while the acetone extract showed better activity than BHT and a-tocopherol which were used as standards in ABTS cation radical scavenging and cupric reducing antioxidant capacity assays, respectively. All extracts were found to be inactive in antialzheimer activity. The acetone extract exhibited moderate antimicrobial activity against C. albicans. The methanol extract of V. pinetorum were found no significant effect on DNA cleavage protection.