The multistressor effect of pH reduction, microplastic and lanthanum on sea urchin Arbacia lixula


Şahin B., Belivermiş M., Demiralp S., Sezer N., Bektaş S., Kaptan E., ...Daha Fazla

Marine Pollution Bulletin, cilt.205, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 205
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.marpolbul.2024.116638
  • Dergi Adı: Marine Pollution Bulletin
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Geobase, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Arbacia lixula, Coelomocytes, Lanthanum, Microplastic, Multistressors, pH reduction
  • İstanbul Üniversitesi Adresli: Evet

Özet

pH reduction (Low pH), microplastic (MP), and lanthanum (La) are substantial stressors due to their increasing trends in marine ecosystems and having adverse effects on marine species. This study investigates the single and combined effects of those stressors (Low pH: 7.45, polyethylene MP: 26 μg L−1, and La: 9 μg L−1) on the physiology and histology of sea urchin Arbacia lixula. Regarding physiological results, while the coelomocytes' quantity was slightly affected by stressors, their viability was significantly affected. The coelomocyte count and viability were suppressed most in Low pH-MP-La treatment. The stressors did not impact the respiration rate. According to the histological examination results, the crypt (villi-like structure) was shorter, and epithelial layers were thinner in single and dual stress treatments like MP, Low pH, Low pH-La, and MP-La. Overall, we suggest that the combination of variable types of those stressors causes negative effects on sea urchin's physiology and histology.