In vitro anti-leukemic effect of Wharton’s jelly derived mesenchymal stem cells


Süleymanoğlu M., Erol Bozkurt A., Abatay Sel F., Özdemir İ. A., Savran Oğuz F., Kuruca D. S., ...More

Molecular Biology Reports, vol.51, no.1, 2024 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 51 Issue: 1
  • Publication Date: 2024
  • Doi Number: 10.1007/s11033-024-09512-7
  • Journal Name: Molecular Biology Reports
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Veterinary Science Database
  • Keywords: Anti-leukemic effect, Cell-based therapy, Co-culture, Leukemia, WJ-MSC
  • Istanbul University Affiliated: Yes

Abstract

Background: Mesenchymal stem cells (MSCs) have the ability to self-renew and are multi-potent. They are a primary candidate for cell-based therapy due to their potential anti-cancer effects. The aim of this study was to evaluate the in vitro anti-leukemic effect of Wharton’s Jelly-derived MSC (WJ-MSC) on the leukemic cell lines K562 and HL-60. Methods: In this present study, WJ-MSCs were isolated from human umbilical cord. The cells were incubated according to the standard culture conditions and characterized by flow cytometry. For experiments, WJ-MSC and leukemic cells were incubated in the direct co-culture at a ratio of 1:5 (leukemia cells: WJ-MSC). HUVEC cells were used as a non-cancerous cell line model. The apoptotic effect of WJ-MSCs on the cell lines was analyzed using Annexin V/PI apoptosis assay. Results: After the direct co-culture of WJ-MSCs on leukemic cell lines, we observed anti-leukemic effects by inducing apoptosis. We had two groups of determination apoptosis with and without WJ-MSCs for all cell lines. Increased apoptosis rates were observed in K562 and HL-60 cell lines, whereas the apoptosis rates in HUVEC cells were low. Conclusions: MSCs are known to inhibit the growth of tumors of both hematopoietic and non-hematopoietic origin in vitro. In our study, WJ-MSC treatment strongly inhibited the viability of HL-60 and K562 and induced apoptosis. Our results also provided new insights into the inhibition of tumor growth by WJ-MSCs in vitro. In the future, WJ-MSCs could be used to inhibit cancer cells in clinical applications.