Collective degrees of freedom of neutron-rich A approximate to 100 nuclei and the first mass measurement of the short-lived nuclide Rb-100

Manea V., Atanasov D., Beck D., Blaum K., Borgmann C., Cakirli R. B., ...More

PHYSICAL REVIEW C, vol.88, no.5, 2013 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 88 Issue: 5
  • Publication Date: 2013
  • Doi Number: 10.1103/physrevc.88.054322
  • Journal Name: PHYSICAL REVIEW C
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Istanbul University Affiliated: Yes


The mass surface in the A similar to 100 region of the nuclear chart is extended by the measurement of the Rb98-100 isotopes with the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The mass of Rb-100 is determined for the first time. The studied nuclides mark the known low-Z frontier of the shape transition at N = 60. To describe the shape evolution towards the krypton isotopic chain, a theoretical analysis is presented in the framework of the Hartree-Fock-Bogoliubov approach. The importance of the pairing interaction for describing the extent and strength of the region of quadrupole deformation is emphasized. A later transition to large prolate deformation or, alternatively, the predominance of oblate deformation is proposed as explanation for the different behavior of the krypton isotopes. Octupole collectivity is explored as a possible mechanism for the evolution of two-neutron separation energies around N = 56.