Tolerance to pentylentetrazol-induced convulsions and protection of cerebrovascular integrity by chronic nicotine


Uzum G., Bahcekapili N., Diler A., Ziylan Y.

INTERNATIONAL JOURNAL OF NEUROSCIENCE, cilt.114, sa.6, ss.735-748, 2004 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 114 Konu: 6
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1080/00207450490440975
  • Dergi Adı: INTERNATIONAL JOURNAL OF NEUROSCIENCE
  • Sayfa Sayıları: ss.735-748

Özet

The authors' previous studies have shown that in nicotine-induced seizures sensitivity was decreased and blood-brain barrier (BBB) disruption was prevented as a consequence of nicotine pretreatment. This study aimed to investigate the possible protective actions of nicotine on cerebrovascular permeability and seizures induced by pentylentetrazol (PTZ) injection. Cerebrovascular effects of nicotine were evaluated by measuring the permeability changes of BBB using Evans-Blue (EB) dye and specific gravity (SG), which indicates brain water and protein content. The experiments were carried out on Wistar rats. Animals were randomly divided into two groups. Convulsions were induced by injection of PTZ (80 mg/kg i.v.) in rats either pretreated with nicotine daily with a low dose of 0.8 mg/kg day.for 21 days or injected with a single dose of 6 mg/kg mecamylamine. The same procedures were followed in control rats with the exception that they were injected only with saline. PTZ injection caused tonic-clonic convulsions and increased the EB dye leakage and specific gravity values in saline-injected control rat brains. Daily injection of nicotine lessened the intensity of seizures. These were accompanied by marked decreases in both the leakage of EB and brain water content. Acute administration of a nAChR antagonist mecamylamine significantly increased seizure latency and decreased the duration of seizures. Thereby, mecamylamine reduced the EB leakage and water content in most brain regions. These results indicate that development of tolerance to PTZ convulsions can be produced by chronic nicotine administration in rats. The mechanism for this effect currently needs clarification. Moreover, the data also suggest that cholinergic activity may account for occurrence of PTZ-induced convulsions.