Assessment of oral bacteria potentially associated with the mobile microbiome in children with congenital heart disease


Aksakal S. D., Güven Y., Topcuoğlu E. N., Kulekcı̇ G., Aktören O.

Journal of Clinical Pediatric Dentistry, vol.48, no.2, pp.47-56, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 48 Issue: 2
  • Publication Date: 2024
  • Doi Number: 10.22514/jocpd.2024.026
  • Journal Name: Journal of Clinical Pediatric Dentistry
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CINAHL
  • Page Numbers: pp.47-56
  • Keywords: Congenital heart disease, Mobile microbiome, Oral microbiome, qPCR
  • Istanbul University Affiliated: Yes

Abstract

In this case-control study, we aimed to investigate the specific oral pathogens potentially associated with the mobile microbiome in children with congenital heart disease (CHD). Caries, oral hygiene and gingival indices were evaluated in 20 children with CHD and a healthy control group, and venous blood samples and saliva were collected. Using quantitative polymerase chain reaction (qPCR), blood samples were analyzed for the presence of bacterial DNA to determine the mobile microbiome, and saliva samples were analyzed to identify and quantify target microorganisms, including Streptococcus mutans (Sm) and its serotype k (Smk), Fusobacterium. nucleatum (Fn), Porphyromonas gingivalis (Pg), Scardovia wiggsiae (Sw) and Aggregitibacter actinomycetemcomitans (Aa) and its JP2 clone (JP2). The findings were analyzed by Mann Whitney U, chi-square, Fisher’s exact and Spearman’s Correlation tests. Bacterial DNA was identified in two blood samples. No significant differences were found between the groups regarding the presence and counts of bacteria in saliva. However, the CHD group exhibited significantly lower caries and higher gingival index scores than the control group. The presence of Pg and Aa were significantly associated with higher gingival index scores. Sm and Smk counts were significantly correlated with caries experience. A positive correlation was found between Fn and total bacteria counts. In conclusion, the mobile microbiome, which has been proposed as a potential marker of dysbiosis at distant sites, was very rare in our pediatric population. The counts of target microorganisms which are potentially associated with the mobile microbiome did not differ in children with CHD and healthy children.