Exploration of the high-redshift universe enabled by THESEUS


Tanvir N. R., Le Floc'h E., Christensen L., Caruana J., Salvaterra R., Ghirlanda G., ...Daha Fazla

EXPERIMENTAL ASTRONOMY, cilt.52, sa.3, ss.219-244, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 52 Sayı: 3
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s10686-021-09778-w
  • Dergi Adı: EXPERIMENTAL ASTRONOMY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Communication Abstracts, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.219-244
  • Anahtar Kelimeler: Gamma-ray bursts, Reionization, Star forming galaxies, Abundances, GAMMA-RAY BURST, MASS-METALLICITY RELATION, LYMAN-ALPHA EMISSION, POPULATION III, COSMIC REIONIZATION, NEUTRAL FRACTION, DUST FORMATION, PEAK ENERGY, NO EVIDENCE, LY-ALPHA
  • İstanbul Üniversitesi Adresli: Evet

Özet

At peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond z greater than or similar to 6; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.