The polynomial dual of an operator ideal


Botelho G., Caliskan E., Moraes G.

MONATSHEFTE FUR MATHEMATIK, cilt.173, sa.2, ss.161-174, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 173 Sayı: 2
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1007/s00605-013-0569-z
  • Dergi Adı: MONATSHEFTE FUR MATHEMATIK
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.161-174
  • İstanbul Üniversitesi Adresli: Hayır

Özet

We prove that the adjoint of a continuous homogeneous polynomial between Banach spaces belongs to a given operator ideal if and only if admits a factorization where the adjoint of the linear operator belongs to . Several consequences of this factorization are obtained, for example we characterize the polynomials whose adjoints are absolutely -summing.