Search for supersymmetry in final states with two or three soft leptons and missing transverse momentum in proton-proton collisions at root s=13 TeV


Tumasyan A., Adam W., Andrejkovic J. W., Bergauer T., Chatterjee S., Dragicevic M., ...Daha Fazla

JOURNAL OF HIGH ENERGY PHYSICS, cilt.2022, sa.4, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2022 Sayı: 4
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1007/jhep04(2022)091
  • Dergi Adı: JOURNAL OF HIGH ENERGY PHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH, Directory of Open Access Journals
  • Anahtar Kelimeler: Hadron-Hadron Scattering, Supersymmetry, FORTRAN CODE, PARTICLES, DECAYS, MODELS, BREAKING, PROGRAM, PHYSICS
  • İstanbul Üniversitesi Adresli: Evet

Özet

A search for supersymmetry in events with two or three low-momentum leptons and missing transverse momentum is performed. The search uses proton-proton collisions at root s = 13TeV collected in the three-year period 2016-2018 by the CMS experiment at the LHC and corresponding to an integrated luminosity of up to 137 fb(-1). The data are found to be in agreement with expectations from standard model processes. The results are interpreted in terms of electroweakino and top squark pair production with a small mass difference between the produced supersymmetric particles and the lightest neutralino. For the electroweakino interpretation, two simplified models are used, a wino-bino model and a higgsino model. Exclusion limits at 95% confidence level are set on (X) over tilde (0)(2) /(X) over tilde (+/-)(1) masses up to 275 GeV for a mass difference of 10 GeV in the wino-bino case, and up to 205(150) GeV for a mass difference of 7.5 (3) GeV in the higgsino case. The results for the higgsino are further interpreted using a phenomenological minimal supersymmetric standard model, excluding the higgsino mass parameter mu up to 180 GeV with the bino mass parameter M-1 at 800 GeV. In the top squark interpretation, exclusion limits are set at top squark masses up to 540 GeV for four-body top squark decays and up to 480 GeV for chargino-mediated decays with a mass difference of 30 GeV.