5th International Enzyme and Bioprocess Days , İzmir, Türkiye, 27 - 29 Ağustos 2024, ss.75, (Özet Bildiri)
In this study, the removal of arsenate, an important environmental pollutant found in wastewater, and simultaneous electricity generation were investigated using microbial fuel cells. Single-chamber air cathode microbial fuel cells were used to examine the effects of synthetic wastewater prepared using sodium arsenate at a concentration range of 0-300 mg/L on electricity production. Arsenate removal percentages were investigated, and changes in microbial ecology were also examined. According to the results, 0.179 V electricity was produced in microbial fuel cells up to 200 mg/L sodium arsenate concentration. However, when the concentration was increased to 300 mg/L, the voltage production decreased significantly. 11.5% of sodium arsenate was removed from synthetic wastewater during batch operations. The microbial ecology results indicated that Geobacter, Azospirillum, and Xanthobacter genera significantly increased following arsenate treatment. In conclusion, arsenatecontaminated wastewater can be biologically treated with single-chamber microbial fuel cells, and electricity can be produced simultaneously.