Minute-Made, High-Efficiency Nanostructured Bi2Te3 via High-Throughput Green Solution Chemical Synthesis


Hamawandi B., Batili H., Paul M., Ballikaya S., Kilic N. I., Szukiewicz R., ...Daha Fazla

NANOMATERIALS, cilt.11, sa.8, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 11 Sayı: 8
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3390/nano11082053
  • Dergi Adı: NANOMATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: nanochemistry, bismuth telluride, thermoelectric, nanoparticles, colloidal synthesis, green chemistry, thermoelectric figure-of-merit, ZT, nanocharacterization, thermal conductivity, ASSISTED HYDROTHERMAL SYNTHESIS, ENHANCED THERMOELECTRIC PERFORMANCE, BISMUTH TELLURIDE NANOPARTICLES, SOLVOTHERMAL SYNTHESIS, SB2TE3, GROWTH, FIGURE, SEMICONDUCTOR, NANOCRYSTALS, FABRICATION
  • İstanbul Üniversitesi Adresli: Evet

Özet

Scalable synthetic strategies for high-quality and reproducible thermoelectric (TE) materials is an essential step for advancing the TE technology. We present here very rapid and effective methods for the synthesis of nanostructured bismuth telluride materials with promising TE performance. The methodology is based on an effective volume heating using microwaves, leading to highly crystalline nanostructured powders, in a reaction duration of two minutes. As the solvents, we demonstrate that water with a high dielectric constant is as good a solvent as ethylene glycol (EG) for the synthetic process, providing a greener reaction media. Crystal structure, crystallinity, morphology, microstructure and surface chemistry of these materials were evaluated using XRD, SEM/TEM, XPS and zeta potential characterization techniques. Nanostructured particles with hexagonal platelet morphology were observed in both systems. Surfaces show various degrees of oxidation, and signatures of the precursors used. Thermoelectric transport properties were evaluated using electrical conductivity, Seebeck coefficient and thermal conductivity measurements to estimate the TE figure-of-merit, ZT. Low thermal conductivity values were obtained, mainly due to the increased density of boundaries via materials nanostructuring. The estimated ZT values of 0.8-0.9 was reached in the 300-375 K temperature range for the hydrothermally synthesized sample, while 0.9-1 was reached in the 425-525 K temperature range for the polyol (EG) sample. Considering the energy and time efficiency of the synthetic processes developed in this work, these are rather promising ZT values paving the way for a wider impact of these strategic materials with a minimum environmental impact.