Gizli Sınıf Analizi ile Türkiye’de Kişisel İnternet Kullanım Profilinin Belirlenmesi


Arıcıgil Çilan Ç., TAŞ N. , ÖZDEMİR M.

DUMLUPINAR UNIVERSITY JOURNAL OF SOCIAL SCIENCES, ss.403-418, 2014 (Diğer Kurumların Hakemli Dergileri)

  • Basım Tarihi: 2014
  • Dergi Adı: DUMLUPINAR UNIVERSITY JOURNAL OF SOCIAL SCIENCES
  • Sayfa Sayıları: ss.403-418

Özet

Gizli Sınıf Analizi’nde gözlenen tüm değişkenlerin gözlenemeyen gizli bir değişkenin nedeni olduğu kabul edilmektedir. Gizli değişkeni karakterize edebilmek amacıyla gözlenen değişkenler arasındaki ilişkilerin yapıları incelenmektedir. Analizde gözlenen değişkenler arasındaki ilişkinin kaynağı gizli değişkendir. Buna göre gizli değişkenin kontrol değişkeni olarak belirlenmesi durumunda gözlenen değişkenler arasındaki ilişkinin koşullu bağımsız olduğu söylenebilir. Analiz gizli sınıf olasılıkları, koşullu olasılıklar ve üstünlük oranlarının yorumuna dayanır. Bu çalışmada Türkiye İstatistik Kurumu’nun 2012 yılında düzenlediği “Hanehalkı Bilişim Teknolojileri Kullanım Araştırması”’nın mikro verileri temel alınmıştır. Araştırmada öncelikle Türkiye’de internet kullanımının profili tanımsal istatistik ölçülerle belirlenmiş ve Türkiye’de bireylerin internet kullanım faaliyetlerine göre kaç sınıfta toplanabileceği Gizli Sınıf Analizi ile incelenmiştir.
Anahtar Kelimeler: Kategorik Veri Analizi, Gizli Sınıf Analizi, Gizli Sınıf Olasılıkları, Koşullu Olasılıklar.

In the latent class analysis, it is assumed that each of the observed indicators is caused by the unobserved indicator or latent variable. The patterns of interrelationships among the observed indicators are analyzed to inspect the underlying latent variable. The source of the relationships between the observed variables is assumed to be the latent variable. The interrelationships among the observed indicators can be thought as conditionally independent by controlling the determined latent variable. The analysis depends on the interpretations of the latent class probabilities, conditional probabilities and the odds ratios. In this study, the microdata “Information and Communication Technology (ICT) Usage Survey on Households and Individuals” obtained from the research of Turkish Statistical Institute in 2012 are used. Firstly, the profile of internet using in Turkey is determined by using the descriptive statistics and a set of mutually exclusive latent classes for the individuals’ internet usage activities in Turkey is identified by the latent class analysis.
Keywords: Categorical Data Analysis, Latent Class Analysis, Latent Class Probabilities, Conditional Probabilities