Orbital motion, epicyclic oscillations, and collision of particles around conformally coupled charged black hole


Mustafa G., YILDIZ G., Javed F., Maurya S., GÜDEKLİ E., Atamurotov F.

Physics of the Dark Universe, cilt.46, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 46
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.dark.2024.101647
  • Dergi Adı: Physics of the Dark Universe
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, INSPEC
  • Anahtar Kelimeler: Circular orbits, Frequencies, Particle motion, Trajectories of particle
  • İstanbul Üniversitesi Adresli: Evet

Özet

The orbital and oscillatory motion of test particles around a non-rotating, conformally coupled charged black hole with scalar hair is studied in this work. The impact of the black hole parameters on particle motion is investigated. The stable circular orbits, specific angular momentum, and radial profiles with specific energy are computed using an analytical approach. We discuss the stability of circular orbits using the effective potential technique. We also compute the effective force and innermost stable circular orbits around a conformally connected charged black hole with scalar hair. In addition, we display the trajectories of particles around a conformally connected charged black hole with scalar hair and numerically integrate the equations of motion for the test particle. Additionally, we determine the formulae for the frequencies of latitudinal and radial harmonic oscillations about the mass of the black hole and the model's parameters. The main characteristics of quasi-periodic oscillations close to stable circular orbits in the black hole's equatorial plane are examined for test particles. Furthermore, the Periastron precession process is explored. We show particle motion around black holes strongly depends on the model parameters. It is important to note that the graphical behavior describing our findings is viable.