GENERAL RELATIVITY AND GRAVITATION, cilt.56, sa.7, 2024 (SCI-Expanded)
In this paper, employing the exponential corrected entropy (Chatterjee and Ghosh in Phys Rev Lett 125:041302, 2020), we derive the modified Friedmann equations from the first law of thermodynamics at apparent horizon and Verlinde's entropic gravity scenario. First, we derive the modified Friedmann equations from the first law of thermodynamics. We investigate the validity of generalised second law (GSL) of thermodynamics and find that it is always satisfied for the all eras of universe. Moreover, we investigate the deceleration parameter for the case k=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=0$$\end{document} in two frameworks. Finally, we numerically study the bouncing behaviour for the modified Friedmann equations obtained from entropic gravity. The results indicate that the bouncing behaviour is possible for the cases k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1$$\end{document} and k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=-1$$\end{document}.