Evaluation of trace elements and oxidative stress levels in the liver and kidney of streptozotocin-induced experimental diabetic rat model


Ozcelik D., Tuncdemir M., Ozturk M., Uzun H.

GENERAL PHYSIOLOGY AND BIOPHYSICS, cilt.30, sa.4, ss.356-363, 2011 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 4
  • Basım Tarihi: 2011
  • Doi Numarası: 10.4149/gpb_2011_04_356
  • Dergi Adı: GENERAL PHYSIOLOGY AND BIOPHYSICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.356-363
  • İstanbul Üniversitesi Adresli: Evet

Özet

In this study, we aimed to investage the relationship among trace elements (Cu, Fe, Zn and Mg) on oxidative and anti-oxidative substances in liver and kidneys tissues in streptozotocin (STZ) diabetic rat model. The mean levels of Fe and Cu were found significantly higher in the liver and kidneys of the diabetic rats, in comparison to the control rats. On the other hand, the mean levels of Zn and Mg in the liver and kidneys of the diabetic rats were significantly lower than in the control rats.

In this study, we aimed to investigate the relationship among trace elements (Cu, Fe, Zn and Mg) on oxidative and anti-oxidative substances in liver and kidneys tissues in streptozotocin (STZ) diabetic rat model. The mean levels of Fe and Cu were found significantly higher in the liver and kidneys of the diabetic rats, in comparison to the control rats. On the other hand, the mean levels of Zn and Mg in the liver and kidneys of the diabetic rats were significantly lower than in the control rats. The liver and kidneys malonaldehyde (MDA) levels of the experimental group were found to be higher than in the control group (p < 0.001; p < 0.01, respectively) after 4 weeks of the experimental period. Superoxide dismutase (SOD) activities and glutathione (GSH) levels in the liver tissue of STZ-induced diabetic rats were found to be lower in the experimental group than in the control group (p < 0.01). SOD activity and GSH concentration in kidneys of the diabetic rats were significantly diminished with respect to the control group (p < 0.01). In conclusion, the present results indicate that the increase of Fe and Cu together with decreas of Zn and Mg concentration in liver and kidney of STZ-induced diabetic rats may be involved in disturbances of oxidative balance in both the tissues. Therefore, these findings may contribute to explain the role of impaired ion metabolism of some elements in the progression of diabetic oxidative complications.