Measurements of jet cross-section ratios in 13 TeV proton-proton collisions with ATLAS


Filmer E., Grant C., Jackson P., Kong A., Pandya H., Potti H., ...Daha Fazla

Physical Review D, cilt.110, sa.7, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 110 Sayı: 7
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1103/physrevd.110.072019
  • Dergi Adı: Physical Review D
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chemical Abstracts Core, INSPEC, zbMATH, Nature Index
  • İstanbul Üniversitesi Adresli: Evet

Özet

Measurements of jet cross-section ratios between inclusive bins of jet multiplicity are performed in Formula Presented of proton-proton collisions with Formula Presented center-of-mass energy, recorded with the ATLAS detector at CERN’s Large Hadron Collider. These ratios are constructed from double-differential cross-section measurements that are made in bins of jet multiplicity and other observables that are sensitive the energy scale and angular distribution of radiation due to the strong interaction in the final state. Additionally, the scalar sum of the two leading jets’ transverse momenta is measured triple differentially, in bins of the third jet’s transverse momentum and of jet multiplicity. These measurements are unfolded to account for acceptance and detector-related effects. The measured distributions are used to construct ratios of the inclusive jet-multiplicity bins, which have been shown to be sensitive to the strong coupling Formula Presented while being less sensitive than other observables to systematic uncertainties and parton distribution functions. The measured distributions are compared with state-of-the-art QCD calculations, including next-to-next-to-leading-order predictions for two- and three-jet events. These predictions are generally found to model the data well and perform best in bins with a modest requirement on the third jet’s transverse momentum. Significant differences between data and Monte Carlo predictions are observed in events with large rapidity gaps and invariant masses of the leading jet pair. Studies leading to reduced jet energy scale uncertainties significantly improve the precision of this work and are documented herein.