PHYSICAL REVIEW D, cilt.104, sa.3, 2021 (SCI-Expanded)
Events where the two leading jets are separated by a pseudorapidity interval devoid of particle activity, known as jet-gap-jet events, are studied in proton-proton collisions at root s = 13 TeV. The signature is expected from hard color-singlet exchange. Each of the highest transverse momentum (p(T)) jets must have p(T)(jet) > 40 GeV and pseudorapidity 1.4 < vertical bar eta(jet)vertical bar < 4.7, with eta(jet1)eta(jet2) < 0, where jet1 and jet2 are the leading and subleading jets in p(T), respectively. The analysis is based on data collected by the CMS and TOTEM experiments during a low luminosity, high-beta* run at the CERN LHC in 2015, with an integrated luminosity of 0.66 pb(-1). Events with a low number of charged particles with p(T) > 0.2 GeV in the interval vertical bar eta vertical bar < 1 between the jets are observed in excess of calculations that assume only color-exchange. The fraction of events produced via color-singlet exchange, f(CSE), is measured as a function of p(T)(jet2), the pseudorapidity difference between the two leading jets, and the azimuthal angular separation between the two leading jets. The fraction f(CSE) has values of 0.4-1.0%. The results are compared with previous measurements and with predictions from perturbative quantum chromodynamics. In addition, the first study of jet-gap-jet events detected in association with an intact proton using a subsample of events with an integrated luminosity of 0.40 pb(-1) is presented. The intact protons are detected with the Roman pot detectors of the TOTEM experiment. The f(CSE) in this sample is 2.91 +/- 0.70(stat)(-1.01)(+1.08)(syst) times larger than that for inclusive dijet production in dijets with similar kinematics.