Grain growth kinetics for B2O3-doped ZnO ceramics


Yuksel B. , Ozkan T. O.

MATERIALS SCIENCE-POLAND, cilt.33, ss.220-229, 2015 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 33 Konu: 2
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1515/msp-2015-0029
  • Dergi Adı: MATERIALS SCIENCE-POLAND
  • Sayfa Sayıları: ss.220-229

Özet

Grain growth kinetics in 0.1 to 2 mol % B2O3-added ZnO ceramics was studied by using a simplified phenomenological grain growth kinetics equation G(n) = K-0.t.exp(-Q/ RT) together with the physical properties of sintered samples. The samples, prepared by conventional ceramics processing techniques, were sintered at temperatures between 1050 to 1250 degrees C for 1, 2, 3, 5 and 10 hours in air. The kinetic grain growth exponent value (n) and the activation energy for the grain growth of the 0.1 mol % B2O3-doped ZnO ceramics were found to be 2.8 and 332 kJ/mol, respectively. By increasing B2O3 content to 1 mol %, the grain growth exponent value (n) and the activation energy decreased to 2 and 238 kJ/mol, respectively. The XRD study revealed the presence of a second phase, Zn3B2O6 formed when the B2O3 content was >= 1 mol %. The formation of Zn3B2O6 phase gave rise to an increase of the grain growth kinetic exponent and the grain growth activation energy. The kinetic grain growth exponent value (n) and the activation energy for the grain growth of the 2 mol % B2O3-doped ZnO ceramics were found to be 3 and 307 kJ/mol, respectively. This can be attributed to the second particle drag (pinning) mechanism in the liquid phase sintering.