The diagnostic value of quantitative texture analysis of conventional MRI sequences using artificial neural networks in grading gliomas


Alis D., Bagcilar O., Senli Y. D., İŞLER C., Yergin M., Kocer N., ...More

CLINICAL RADIOLOGY, vol.75, no.5, pp.351-357, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Editorial Material
  • Volume: 75 Issue: 5
  • Publication Date: 2020
  • Doi Number: 10.1016/j.crad.2019.12.008
  • Journal Name: CLINICAL RADIOLOGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, CAB Abstracts, CINAHL, EMBASE, MEDLINE
  • Page Numbers: pp.351-357
  • Istanbul University Affiliated: No

Abstract

AIM: To explore the value of quantitative texture analysis of conventional magnetic resonance imaging (MRI) sequences using artificial neural networks (ANN) for the differentiation of high-grade gliomas (HGG) and low-grade gliomas (LGG).