Investigation of the efficacy of paclitaxel on some miRNAs profiles in breast cancer stem cells


ERTÜRK E., ARI F., Akgun O., Ulukaya E., KÜÇÜKALİ C. İ., Zeybek U.

TURKISH JOURNAL OF BIOLOGY, cilt.45, sa.5, ss.613-624, 2021 (SCI-Expanded) identifier identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 5
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3906/biy-2103-46
  • Dergi Adı: TURKISH JOURNAL OF BIOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Veterinary Science Database, TR DİZİN (ULAKBİM)
  • Sayfa Sayıları: ss.613-624
  • Anahtar Kelimeler: Breast cancer, stem cells, MCF-7s, miR-125b, paclitaxel, ATP ASSAY, RESISTANCE, MICRORNAS, PROGNOSIS, BIOMARKERS, CISPLATIN, DIAGNOSIS, MIR-125B, TARGETS, TUMORS
  • İstanbul Üniversitesi Adresli: Evet

Özet

Understanding of the functions of microRNAs in breast cancer and breast cancer stem cells have been a hope for the development of new molecular targeted therapies. Here, it is aimed to investigate the differences in the expression levels of let-7a, miR-10b, miR-21, miR-125b, miR-145, miR-155, miR-200c, miR-221, miR-222 and miR-335, which associated with gene and proteins in MCF-7 (parental) and MCF-7s (Mammosphere/stem cell-enriched population/CD44+/CD24-cells) cells treated with paclitaxel. MCF7-s were obtained from parental MCF-7 cells. Cytotoxic activity of paclitaxel was determined by ATP assay. Total RNA isolation and cDNA conversion were performed from the samples. Changes in expression levels of miRNAs were examined by RT-qPCR. Identified target genes and proteins of miRNAs were analyzed with RT-qPCR and western blot analysis, respectively. miR-125b was significantly expressed (2.0946-fold; p = 0.021) in MCF-7s cells compared to control after treatment with paclitaxel. Downregulation of SMO, STAT3, NANOG, OCT4, SOX2, ERBB2 and ERBB3 and upregulation of TP53 genes were significant after 48 h treatment in MCF-7s cells. Protein expressions of SOX2, OCT4, SMAD4, SOX2 and OCT4 also decreased. Paclitaxel induces miR-125b expression in MCF-7s cells. Upregulation of miR-125b may be used as a biomarker for the prediction of response to paclitaxel treatment in breast cancer.