Vancomycin tolerance in enterococci


Saribas S., BAGDATLI Y.

CHEMOTHERAPY, cilt.50, sa.5, ss.250-254, 2004 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 5
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1159/000081946
  • Dergi Adı: CHEMOTHERAPY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.250-254
  • İstanbul Üniversitesi Adresli: Evet

Özet

Background: Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Methods: Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37degreesC with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio greater than or equal to32. Results: Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from less than or equal to1 to 4 mg/l, the MBCs were greater than or equal to512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC greater than or equal to32. We found that a 100% tolerance was present in susceptible strains. Conclusions: One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections. Copyright (C) 2004 S. Karger AG, Basel.