Beta vulgaris L. var cicla Decreases Liver Injury Induced by Antiarrhytmic Agent, Amiodarone


Turkyilmaz I. B., Sancar S., Bolkent Ş., Yanardag R.

Chemistry and Biodiversity, cilt.21, sa.8, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 21 Sayı: 8
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1002/cbdv.202301944
  • Dergi Adı: Chemistry and Biodiversity
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database
  • Anahtar Kelimeler: Amiodarone, Antiarrhythmic agent, Chard (Beta vulgaris L. var cicla), Liver, Rat
  • İstanbul Üniversitesi Adresli: Evet

Özet

Amiodarone (AMD) is an effective antiarrhythmic drug, but its long-term usage strongly forms liver toxicity due to its accumulation tendency. The chard (Beta vulgaris L. var. cicla) is a unique plant which has a blood sugar-lowering effect and powerful antioxidant activity. The aim of the current study was to investigate the possible protective effects of chard on AMD-induced liver injury. Male Sprague-Dawley rats were divided into four groups. Control group, aqueous chard extract given group 500 mg/kg/day for one week, AMD given group 100 mg/kg/day for one week, AMD+Chard given group (at the same doses and times). They were sacrificed on the 8th day. The blood and liver samples were taken. The serum and liver biochemical parameters were found to be changed in AMD treated group. Chard administration reversed these parameters in serum and liver. In histological experiments, necrotic areas, mononuclear cell infiltration, the endothelial rupture in central vein, sinusoidal dilatation, hyperemia, dark eosinophilic cells and picnotic nucleus were observed in liver tissues of AMD treated group. Chard treatment reduced liver tissue damage. Considering results, we can suggest that chard prevented AMD induced liver injury biochemically and histologically.