A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states in pp collisions at √s = 13 TeV with the ATLAS detector


Creative Commons License

Aad G., Abbott B., Abbott D., Abeling K., Abidi S., Aboulhorma A., ...More

Journal of High Energy Physics, vol.2023, no.7, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 2023 Issue: 7
  • Publication Date: 2023
  • Doi Number: 10.1007/jhep07(2023)200
  • Journal Name: Journal of High Energy Physics
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH, Directory of Open Access Journals
  • Keywords: Hadron-Hadron Scattering, Higgs Physics, Proton-Proton Scattering
  • Istanbul University Affiliated: Yes

Abstract

A search for heavy Higgs bosons produced in association with a vector boson and decaying into a pair of vector bosons is performed in final states with two leptons (electrons or muons) of the same electric charge, missing transverse momentum and jets. A data sample of proton–proton collisions at a centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the Large Hadron Collider between 2015 and 2018 is used. The data correspond to a total integrated luminosity of 139 fb −1. The observed data are in agreement with Standard Model background expectations. The results are interpreted using higher-dimensional operators in an effective field theory. Upper limits on the production cross-section are calculated at 95% confidence level as a function of the heavy Higgs boson’s mass and coupling strengths to vector bosons. Limits are set in the Higgs boson mass range from 300 to 1500 GeV, and depend on the assumed couplings. The highest excluded mass for a heavy Higgs boson with the coupling combinations explored is 900 GeV. Limits on coupling strengths are also provided. [Figure not available: see fulltext.]